首页> 外文OA文献 >Classical and Quantum Complexity of the Sturm-Liouville Eigenvalue Problem
【2h】

Classical and Quantum Complexity of the Sturm-Liouville Eigenvalue Problem

机译:Sturm-Liouville特征值问题的古典和量子复杂性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the approximation of the smallest eigenvalue of a Sturm-Liouville problem in the classical and quantum settings. We consider a univariate Sturm-Liouville eigenvalue problem with a nonnegative function $q$ from the class $C^2([0,1])$ and study the minimal number $n(\e)$ of function evaluations or queries that are necessary to compute an $\e$-approximation of the smallest eigenvalue. We prove that $n(\e)=\Theta(\e^{-1/2})$ in the (deterministic) worst case setting, and $n(\e)=\Theta(\e^{-2/5})$ in the randomized setting. The quantum setting offers a polynomial speedup with {\it bit} queries and an exponential speedup with {\it power} queries. Bit queries are similar to the oracle calls used in Grover's algorithm appropriately extended to real valued functions. Power queries are used for a number of problems including phase estimation. They are obtained by considering the propagator of the discretized system at a number of different time moments. They allow us to use powers of the unitary matrix $\exp(\tfrac12 {\rm i}M)$, where $M$ is an $n\times n$ matrix obtained from the standard discretization of the Sturm-Liouville differential operator. The quantum implementation of power queries by a number of elementary quantum gates that is polylog in $n$ is an open issue.
机译:我们研究经典和量子环境中Sturm-Liouville问题的最小特征值的近似值。我们考虑来自类$ C ^ 2([0,1])$的具有非负函数$ q $的单变量Sturm-Liouville特征值问题,并研究函数求值或查询的最小数$ n(\ e)$是计算最小特征值的\\ e $近似值所必需的。我们证明在确定性最坏情况下$ n(\ e)= \ Theta(\ e ^ {-1/2})$和$ n(\ e)= \ Theta(\ e ^ {-2 / 5})$(在随机设置中)。量子设置通过{\ it bit}查询提供多项式加速,并通过{\ it power}查询提供指数加速。位查询类似于在Grover算法中使用的oracle调用,该调用适当地扩展到实值函数。功率查询用于许多问题,包括相位估计。它们是通过考虑离散系统在多个不同时刻的传播器而获得的。它们允许我们使用the矩阵的幂$ \ exp(\ tfrac12 {\ rm i} M)$,其中$ M $是从Sturm-Liouville微分算子的标准离散化获得的$ n \乘以n $的矩阵。通过$ n $中的polylog的多个基本量子门对功率查询的量子实现是一个未解决的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号